diff --git a/compendium_v2/db/presentation_models.py b/compendium_v2/db/presentation_models.py
index a25200e7a21a3b0551b75e09b36994939bc76df3..52c6411ccc8a5c94df4ecf766e743d71d7e3ed81 100644
--- a/compendium_v2/db/presentation_models.py
+++ b/compendium_v2/db/presentation_models.py
@@ -475,7 +475,6 @@ class NetworkAutomation(db.Model):
 
 class Service(db.Model):
     __tablename__ = 'service'
-
     name_key: Mapped[str128_pk]
     name: Mapped[str128]
     category: Mapped[ServiceCategory]
@@ -484,7 +483,6 @@ class Service(db.Model):
 
 class NRENService(db.Model):
     __tablename__ = 'nren_service'
-
     nren_id: Mapped[int_pk_fkNREN]
     nren: Mapped[NREN] = relationship(lazy='joined')
     year: Mapped[int_pk]
diff --git a/compendium_v2/publishers/excel_parser.py b/compendium_v2/publishers/excel_parser.py
index ce1efff48e133c142f4d888ec3186bed05a5734a..94a30647b3c4014649e728bf7b0b8c9cdad8d364 100644
--- a/compendium_v2/publishers/excel_parser.py
+++ b/compendium_v2/publishers/excel_parser.py
@@ -3,7 +3,7 @@ import logging
 import openpyxl
 
 from compendium_v2.conversion import mapping
-from compendium_v2.db.presentation_models import FeeType
+from compendium_v2.db.presentation_model_enums import CarryMechanism, ConnectivityCoverage, UserCategory, FeeType
 from compendium_v2.environment import setup_logging
 from compendium_v2.resources import get_resource_file_path
 
@@ -12,6 +12,7 @@ setup_logging()
 logger = logging.getLogger(__name__)
 
 EXCEL_FILE_ORGANISATION = get_resource_file_path("2021_Organisation_DataSeries.xlsx")
+EXCEL_FILE_USERS = get_resource_file_path("2022_Connected_Users_DataSeries.xlsx")
 EXCEL_FILE_NETWORKS = get_resource_file_path("2022_Networks_DataSeries.xlsx")
 EXCEL_FILE_NREN_SERVICES = get_resource_file_path("NREN-Services-prefills_2023_Recovered.xlsx")
 
@@ -440,3 +441,387 @@ def fetch_nren_services_excel_data():
                     'additional_information': additional_information.strip(),
                     'official_description': '',
                 }
+
+
+def get_category(excel_cat):
+    if not excel_cat:
+        return None
+    if "universit" in excel_cat.lower():
+        return UserCategory.universities
+    if "research ins" in excel_cat.lower():
+        return UserCategory.institutes
+    if "further" in excel_cat.lower() or "fe" == excel_cat.lower():
+        return UserCategory.further_education
+    if "inter" in excel_cat.lower():
+        return UserCategory.iros
+    if "cultural" in excel_cat.lower() or "librar" in excel_cat.lower():
+        return UserCategory.cultural
+    if "hospital" in excel_cat.lower():
+        return UserCategory.hospitals
+    if "primary" in excel_cat.lower():
+        return UserCategory.primary_schools
+    if "secondary" in excel_cat.lower():
+        return UserCategory.secondary_schools
+    if "govern" in excel_cat.lower():
+        return UserCategory.government
+    if "profit" in excel_cat.lower():
+        return UserCategory.for_profit_orgs
+    logger.warning(f'unknown user category: {excel_cat}')
+
+
+def fetch_remit_excel_data():
+    wb = openpyxl.load_workbook(EXCEL_FILE_USERS, data_only=True, read_only=True)
+    sheet_name = "Connectivity Remit"
+    ws = wb[sheet_name]
+    rows = list(ws.rows)
+
+    def get_remit(excel_remit):
+        if not excel_remit:
+            return None
+        if "including transit" in excel_remit.lower():
+            return ConnectivityCoverage.yes_incl_other
+        if "national nren" in excel_remit.lower():
+            return ConnectivityCoverage.yes_national_nren
+        if "some circ" in excel_remit.lower():
+            return ConnectivityCoverage.sometimes
+        if "policy reas" in excel_remit.lower():
+            return ConnectivityCoverage.no_policy
+        if "financial" in excel_remit.lower():
+            return ConnectivityCoverage.no_financial
+        if "other reason" in excel_remit.lower():
+            return ConnectivityCoverage.no_other
+        if "unsure" in excel_remit.lower():
+            return ConnectivityCoverage.unsure
+        logger.warning(f'unknown remit: {excel_remit}')
+
+    result = {}
+    def create_points_for_year(year, start_column):
+        for i in range(8, 51):
+            nren_name = rows[i][start_column].value
+            if not nren_name:
+                continue
+            nren_name = nren_name.upper()
+            for col in range(start_column + 2, start_column + 21, 2):
+                c = col
+                if year == 2021 and col > 30:
+                    c += 2
+                category = get_category(rows[7][c].value)
+                remit = get_remit(rows[i][c].value)
+                if category and remit:
+                    result[(nren_name, year, category)] = remit
+
+    create_points_for_year(2019, 72)
+    create_points_for_year(2020, 50)
+    create_points_for_year(2021, 26)
+    create_points_for_year(2022, 3)
+    return result
+
+
+def fetch_nr_connected_excel_data():
+    wb = openpyxl.load_workbook(EXCEL_FILE_USERS, data_only=True, read_only=True)
+    sheet_name = "Connected Institutions"
+    ws = wb[sheet_name]
+    rows = list(ws.rows)
+
+    result = {}
+    def create_points_for_year(year, start_column):
+        for i in range(5, 48):
+            nren_name = rows[i][start_column].value
+            if not nren_name:
+                continue
+            nren_name = nren_name.upper()
+            for c in range(start_column + 1, start_column + 11):
+                category = get_category(rows[4][c].value)
+                nr_connected = int(rows[i][c].value) if rows[i][c].value else None
+                if category and nr_connected:
+                    result[(nren_name, year, category)] = nr_connected
+
+    create_points_for_year(2019, 39)
+    create_points_for_year(2020, 27)
+    create_points_for_year(2021, 14)
+    create_points_for_year(2022, 2)
+    return result
+
+
+def fetch_market_share_excel_data():
+    wb = openpyxl.load_workbook(EXCEL_FILE_USERS, data_only=True, read_only=True)
+    sheet_name = "Table Market Share"
+    ws = wb[sheet_name]
+    rows = list(ws.rows)
+
+    result = {}
+    def create_points_for_year(year, start_column):
+        for i in range(8, 51):
+            nren_name = rows[i][start_column].value
+            if not nren_name:
+                continue
+            nren_name = nren_name.upper()
+            for c in range(start_column + 1, start_column + 11):
+                category = get_category(rows[7][c].value)
+                percentage_connected = float(rows[i][c].value) if rows[i][c].value else None
+                if category and percentage_connected:
+                    result[(nren_name, year, category)] = percentage_connected
+
+    create_points_for_year(2017, 64)
+    create_points_for_year(2018, 52)
+    create_points_for_year(2019, 40)
+    create_points_for_year(2020, 28)
+    create_points_for_year(2021, 16)
+    create_points_for_year(2022, 3)
+    return result
+
+
+def fetch_users_served_excel_data():
+    wb = openpyxl.load_workbook(EXCEL_FILE_USERS, data_only=True, read_only=True)
+    sheet_name = "Users"
+    ws = wb[sheet_name]
+    rows = list(ws.rows)
+
+    result = {}
+    def create_points_for_year(year, start_column):
+        for i in range(4, 47):
+            nren_name = rows[i][start_column].value
+            if not nren_name:
+                continue
+            nren_name = nren_name.upper()
+            for c in range(start_column + 1, start_column + 11):
+                category = get_category(rows[3][c].value)
+                users_connected = int(rows[i][c].value) if rows[i][c].value else None
+                if category and users_connected:
+                    result[(nren_name, year, category)] = users_connected
+
+    create_points_for_year(2019, 40)
+    create_points_for_year(2020, 28)
+    create_points_for_year(2021, 14)
+    create_points_for_year(2022, 2)
+    return result
+
+
+def fetch_typical_speed_excel_data():
+    wb = openpyxl.load_workbook(EXCEL_FILE_USERS, data_only=True, read_only=True)
+    sheet_name = "Table _Typical IP Link capacity"
+    ws = wb[sheet_name]
+    rows = list(ws.rows)
+
+    result = {}
+    def create_points_for_year(year, start_column):
+        for i in range(33, 76):
+            nren_name = rows[i][start_column].value
+            if not nren_name:
+                continue
+            nren_name = nren_name.upper()
+            for c in range(start_column + 1, start_column + 11):
+                category = get_category(rows[32][c].value)
+                typical_speed = int(rows[i][c].value) if rows[i][c].value else None
+                if category and typical_speed:
+                    result[(nren_name, year, category)] = typical_speed
+
+    create_points_for_year(2017, 75)
+    create_points_for_year(2018, 50)
+    create_points_for_year(2019, 38)
+    create_points_for_year(2020, 26)
+    create_points_for_year(2021, 14)
+    create_points_for_year(2022, 2)
+    return result
+
+
+def fetch_highest_speed_excel_data():
+    wb = openpyxl.load_workbook(EXCEL_FILE_USERS, data_only=True, read_only=True)
+    sheet_name = "Table _Highest IP Link capacity"
+    ws = wb[sheet_name]
+    rows = list(ws.rows)
+
+    result = {}
+    def create_points_for_year(year, start_column):
+        for i in range(33, 76):
+            nren_name = rows[i][start_column].value
+            if not nren_name:
+                continue
+            nren_name = nren_name.upper()
+            for c in range(start_column + 1, start_column + 11):
+                category = get_category(rows[32][c].value)
+                highest_speed = int(rows[i][c].value) if rows[i][c].value else None
+                if category and highest_speed:
+                    result[(nren_name, year, category)] = highest_speed
+
+    create_points_for_year(2017, 64)
+    create_points_for_year(2018, 51)
+    create_points_for_year(2019, 38)
+    create_points_for_year(2020, 26)
+    create_points_for_year(2021, 14)
+    create_points_for_year(2022, 2)
+    return result
+
+
+def fetch_highest_speed_proportion_excel_data():
+    wb = openpyxl.load_workbook(EXCEL_FILE_USERS, data_only=True, read_only=True)
+    sheet_name = "Aver High cap conn Share"
+    ws = wb[sheet_name]
+    rows = list(ws.rows)
+
+    result = {}
+    def create_points_for_year(year, start_column):
+        for i in range(5, 48):
+            nren_name = rows[i][start_column].value
+            if not nren_name:
+                continue
+            nren_name = nren_name.upper()
+            for c in range(start_column + 1, start_column + 11):
+                category = get_category(rows[4][c].value)
+                highest_speed = float(rows[i][c].value) if rows[i][c].value else None
+                if category and highest_speed:
+                    result[(nren_name, year, category)] = highest_speed
+
+    create_points_for_year(2020, 27)
+    create_points_for_year(2021, 14)
+    create_points_for_year(2022, 2)
+    return result
+
+
+def fetch_carriers_excel_data():
+    wb = openpyxl.load_workbook(EXCEL_FILE_USERS, data_only=True, read_only=True)
+    sheet_name = "Traffic carriers"
+    ws = wb[sheet_name]
+    rows = list(ws.rows)
+
+    def get_carrier(excel_carrier):
+        if not excel_carrier:
+            return None
+        if "comme" in excel_carrier.lower():
+            return CarryMechanism.commercial_provider_backbone
+        if "man" in excel_carrier.lower():
+            return CarryMechanism.man
+        if "local loop" in excel_carrier.lower():
+            return CarryMechanism.nren_local_loops
+        if "other" in excel_carrier.lower():
+            return CarryMechanism.other
+        if "regional" in excel_carrier.lower():
+            return CarryMechanism.regional_nren_backbone
+        logger.warning(f'unknown carrier: {excel_carrier}')
+
+    result = {}
+    def create_points_for_year(year, start_column):
+        for i in range(3, 46):
+            nren_name = rows[i][start_column].value
+            if not nren_name:
+                continue
+            nren_name = nren_name.upper()
+            for c in range(start_column + 1, start_column + 11):
+                category = get_category(rows[2][c].value)
+                carrier = get_carrier(rows[i][c].value)
+                if category and carrier:
+                    result[(nren_name, year, category)] = carrier
+
+    create_points_for_year(2019, 40)
+    create_points_for_year(2020, 27)
+    create_points_for_year(2021, 14)
+    create_points_for_year(2022, 2)
+    return result
+
+
+def fetch_growth_excel_data():
+    wb = openpyxl.load_workbook(EXCEL_FILE_NETWORKS, data_only=True, read_only=True)
+    sheet_name = "Table Traffic Growth % "
+    ws = wb[sheet_name]
+    rows = list(ws.rows)
+
+    result = {}
+    def create_points_for_year(year, start_column):
+        for i in range(5, 46):
+            nren_name = rows[i][start_column].value
+            if not nren_name:
+                continue
+            nren_name = nren_name.upper()
+            for c in range(start_column + 1, start_column + 11):
+                category = get_category(rows[4][c].value)
+                growth = float(rows[i][c].value) if rows[i][c].value else None
+                if category and growth:
+                    result[(nren_name, year, category)] = growth
+
+    create_points_for_year(2019, 40)
+    create_points_for_year(2020, 26)
+    create_points_for_year(2021, 14)
+    create_points_for_year(2022, 2)
+    return result
+
+
+def fetch_average_traffic_excel_data():
+    wb = openpyxl.load_workbook(EXCEL_FILE_USERS, data_only=True, read_only=True)
+    sheet_name = "Average Traffic"
+    ws = wb[sheet_name]
+    rows = list(ws.rows)
+
+    result = {}
+    def create_points_for_year(year, start_column):
+        for i in range(5, 48):
+            nren_name = rows[i][start_column].value
+            if not nren_name:
+                continue
+            nren_name = nren_name.upper()
+            for c in range(start_column + 1, start_column + 21, 2):
+                category = get_category(rows[3][c].value)
+                from_inst = int(rows[i][c].value) if rows[i][c].value else None
+                to_inst = int(rows[i][c+1].value) if rows[i][c+1].value else None
+                if category and (from_inst or to_inst):
+                    result[(nren_name, year, category)] = (from_inst, to_inst)
+
+    create_points_for_year(2019, 68)
+    create_points_for_year(2020, 46)
+    create_points_for_year(2021, 24)
+    create_points_for_year(2022, 2)
+    return result
+
+
+def fetch_peak_traffic_excel_data():
+    wb = openpyxl.load_workbook(EXCEL_FILE_USERS, data_only=True, read_only=True)
+    sheet_name = "Peak traffic"
+    ws = wb[sheet_name]
+    rows = list(ws.rows)
+
+    result = {}
+    def create_points_for_year(year, start_column):
+        for i in range(6, 49):
+            nren_name = rows[i][start_column].value
+            if not nren_name:
+                continue
+            nren_name = nren_name.upper()
+            for c in range(start_column + 1, start_column + 21, 2):
+                category = get_category(rows[4][c].value)
+                from_inst = int(rows[i][c].value) if rows[i][c].value else None
+                to_inst = int(rows[i][c+1].value) if rows[i][c+1].value else None
+                if category and (from_inst or to_inst):
+                    result[(nren_name, year, category)] = (from_inst, to_inst)
+
+    create_points_for_year(2019, 70)
+    create_points_for_year(2020, 47)
+    create_points_for_year(2021, 24)
+    create_points_for_year(2022, 2)
+    return result
+
+
+def fetch_remote_campuses_excel_data():
+    wb = openpyxl.load_workbook(EXCEL_FILE_USERS, data_only=True, read_only=True)
+    sheet_name = "Foreign Campuses"
+    ws = wb[sheet_name]
+    rows = list(ws.rows)
+
+    def create_points_for_year(year, start_column):
+        for i in range(5, 48):
+            nren_name = rows[i][start_column].value
+            if not nren_name:
+                continue
+            nren_name = nren_name.upper()
+            have_remote = rows[i][start_column + 1].value
+            connectivity = rows[i][start_column + 2].value
+            country = rows[i][start_column + 3].value
+            connected_to_r_e = rows[i][start_column + 4].value
+            if have_remote and have_remote.upper() == "YES":
+                connectivity = connectivity.upper() == "YES" if connectivity else False
+                connected_to_r_e = connected_to_r_e not in [None, "-", "Not connected.", "We do not know"]
+                country = country or ""
+                yield nren_name, year, connectivity, country, connected_to_r_e
+
+    yield from create_points_for_year(2019, 22)
+    yield from create_points_for_year(2020, 16)
+    yield from create_points_for_year(2021, 10)
+    yield from create_points_for_year(2022, 4)
diff --git a/compendium_v2/publishers/helpers.py b/compendium_v2/publishers/helpers.py
index aeb4ecd94aa3d8b80743617fcad8d5e742abaa29..1668bb9033b82fee27cbc00db79ad46832968ea2 100644
--- a/compendium_v2/publishers/helpers.py
+++ b/compendium_v2/publishers/helpers.py
@@ -22,6 +22,8 @@ def get_uppercase_nren_dict():
     # add aliases that are used in the source data:
     nren_dict['ASNET'] = nren_dict['ASNET-AM']
     nren_dict['KIFU (NIIF)'] = nren_dict['KIFU']
+    nren_dict['KIFÜ'] = nren_dict['KIFU']
+    nren_dict['NIIF/HUNGARNET'] = nren_dict['KIFU']
     nren_dict['SURFNET'] = nren_dict['SURF']
     nren_dict['UOM/RICERKANET'] = nren_dict['UNIVERSITY OF MALTA']
     nren_dict['UOM'] = nren_dict['UNIVERSITY OF MALTA']
diff --git a/compendium_v2/publishers/survey_publisher_legacy_excel.py b/compendium_v2/publishers/survey_publisher_legacy_excel.py
index dfb6b6b51574f2b78cc93d77536d1d16103209d7..059d7d93d1b927bb95024a5ee08a914e3ac15a1c 100644
--- a/compendium_v2/publishers/survey_publisher_legacy_excel.py
+++ b/compendium_v2/publishers/survey_publisher_legacy_excel.py
@@ -269,18 +269,187 @@ def db_nren_services_migration(nren_dict):
     db.session.commit()
 
 
+def db_connected_proportion_migration(nren_dict):
+    remit = excel_parser.fetch_remit_excel_data()
+    nr_connected = excel_parser.fetch_nr_connected_excel_data()
+    market_share = excel_parser.fetch_market_share_excel_data()
+    users_served = excel_parser.fetch_users_served_excel_data()
+
+    all_entry_keys = set()
+    all_entry_keys.update(remit.keys())
+    all_entry_keys.update(nr_connected.keys())
+    all_entry_keys.update(market_share.keys())
+    all_entry_keys.update(users_served.keys())
+
+    for key in all_entry_keys:
+        (abbrev, year, user_category) = key
+        if abbrev not in nren_dict:
+            logger.warning(f'{abbrev} unknown. Skipping.')
+            continue
+
+        nren = nren_dict[abbrev]
+        connected_proportion = presentation_models.ConnectedProportion(
+            nren=nren,
+            nren_id=nren.id,
+            year=year,
+            user_category=user_category,
+            coverage=remit.get(key),
+            number_connected=nr_connected.get(key),
+            market_share=market_share.get(key),
+            users_served=users_served.get(key)
+        )
+        db.session.merge(connected_proportion)
+
+    db.session.commit()
+
+
+def db_connectivity_level_migration(nren_dict):
+    typical_speed = excel_parser.fetch_typical_speed_excel_data()
+    highest_speed = excel_parser.fetch_highest_speed_excel_data()
+    highest_speed_proportion = excel_parser.fetch_highest_speed_proportion_excel_data()
+
+    all_entry_keys = set()
+    all_entry_keys.update(typical_speed.keys())
+    all_entry_keys.update(highest_speed.keys())
+    all_entry_keys.update(highest_speed_proportion.keys())
+
+    for key in all_entry_keys:
+        (abbrev, year, user_category) = key
+        if abbrev not in nren_dict:
+            logger.warning(f'{abbrev} unknown. Skipping.')
+            continue
+
+        nren = nren_dict[abbrev]
+        connected_proportion = presentation_models.ConnectivityLevel(
+            nren=nren,
+            nren_id=nren.id,
+            year=year,
+            user_category=user_category,
+            typical_speed=typical_speed.get(key),
+            highest_speed=highest_speed.get(key),
+            highest_speed_proportion=highest_speed_proportion.get(key)
+        )
+        db.session.merge(connected_proportion)
+
+    db.session.commit()
+
+
+def db_connection_carrier_migration(nren_dict):
+    carriers = excel_parser.fetch_carriers_excel_data()
+    for key, carry_mechanism in carriers.items():
+        (abbrev, year, user_category) = key
+        if abbrev not in nren_dict:
+            logger.warning(f'{abbrev} unknown. Skipping.')
+            continue
+
+        nren = nren_dict[abbrev]
+        connection_carrier = presentation_models.ConnectionCarrier(
+            nren=nren,
+            nren_id=nren.id,
+            year=year,
+            user_category=user_category,
+            carry_mechanism=carry_mechanism
+        )
+        db.session.merge(connection_carrier)
+
+    db.session.commit()
+
+
+def db_connectivity_growth_migration(nren_dict):
+    growth = excel_parser.fetch_growth_excel_data()
+    for key, growth_percent in growth.items():
+        (abbrev, year, user_category) = key
+        if abbrev not in nren_dict:
+            logger.warning(f'{abbrev} unknown. Skipping.')
+            continue
+
+        nren = nren_dict[abbrev]
+        connectivity_growth = presentation_models.ConnectivityGrowth(
+            nren=nren,
+            nren_id=nren.id,
+            year=year,
+            user_category=user_category,
+            growth=growth_percent
+        )
+        db.session.merge(connectivity_growth)
+
+    db.session.commit()
+
+
+def db_connectivity_load_migration(nren_dict):
+    average = excel_parser.fetch_average_traffic_excel_data()
+    peak = excel_parser.fetch_peak_traffic_excel_data()
+
+    all_entry_keys = set()
+    all_entry_keys.update(average.keys())
+    all_entry_keys.update(peak.keys())
+
+    for key in all_entry_keys:
+        (abbrev, year, user_category) = key
+        if abbrev not in nren_dict:
+            logger.warning(f'{abbrev} unknown. Skipping.')
+            continue
+
+        nren = nren_dict[abbrev]
+        connectivity_load = presentation_models.ConnectivityLoad(
+            nren=nren,
+            nren_id=nren.id,
+            year=year,
+            user_category=user_category,
+            average_load_from_institutions=average.get(key, (None, None))[0],
+            average_load_to_institutions=average.get(key, (None, None))[1],
+            peak_load_from_institutions=peak.get(key, (None, None))[0],
+            peak_load_to_institutions=peak.get(key, (None, None))[1]
+        )
+        db.session.merge(connectivity_load)
+
+    db.session.commit()
+
+
+def db_remote_campuses_migration(nren_dict):
+    campuses = excel_parser.fetch_remote_campuses_excel_data()
+    for (abbrev, year, connectivity, country, connected_to_r_e) in campuses:
+        if abbrev not in nren_dict:
+            logger.warning(f'{abbrev} unknown. Skipping.')
+            continue
+
+        connections = []
+        if country:
+            connections.append({'country': country, 'local_r_and_e_connection': connected_to_r_e})
+
+        nren = nren_dict[abbrev]
+        connection_carrier = presentation_models.RemoteCampuses(
+            nren=nren,
+            nren_id=nren.id,
+            year=year,
+            remote_campus_connectivity=connectivity,
+            connections=connections
+        )
+        db.session.merge(connection_carrier)
+
+    db.session.commit()
+
+
 def _cli(app):
     with app.app_context():
         nren_dict = helpers.get_uppercase_nren_dict()
-        db_budget_migration(nren_dict)
-        db_funding_migration(nren_dict)
-        db_charging_structure_migration(nren_dict)
-        db_staffing_migration(nren_dict)
-        db_ecprojects_migration(nren_dict)
-        db_organizations_migration(nren_dict)
-        db_traffic_volume_migration(nren_dict)
-        db_services_migration()
-        db_nren_services_migration(nren_dict)
+        # db_budget_migration(nren_dict)
+        # db_funding_migration(nren_dict)
+        # db_charging_structure_migration(nren_dict)
+        # db_staffing_migration(nren_dict)
+        # db_ecprojects_migration(nren_dict)
+        # db_organizations_migration(nren_dict)
+        # db_traffic_volume_migration(nren_dict)
+        # db_services_migration()
+        # db_nren_services_migration(nren_dict)
+
+        # db_connected_proportion_migration(nren_dict)
+        # db_connectivity_level_migration(nren_dict)
+
+        db_connection_carrier_migration(nren_dict)
+        db_connectivity_growth_migration(nren_dict)
+        db_connectivity_load_migration(nren_dict)
+        db_remote_campuses_migration(nren_dict)
 
 
 @click.command()